
Abstract QTL mapping experiments in plant breeding
may involve multiple populations or pedigrees that are
related through their ancestors. These known relation-
ships have often been ignored for the sake of statistical
analysis, despite their potential increase in power of
mapping. We describe here a Bayesian method for QTL
mapping in complex plant populations and reported the
results from its application to a (previously analysed) po-
tato data set. This Bayesian method was originally devel-
oped for human genetics data, and we have proved that it
is useful for complex plant populations as well, based on
a sensitivity analysis that was performed here. The meth-
od accommodates robustness to complex structures in
pedigree data, full flexibility in the estimation of the
number of QTL across multiple chromosomes, thereby
accounting for uncertainties in the transmission of QTL
and marker alleles due to incomplete marker informa-
tion, and the simultaneous inclusion of non-genetic fac-
tors affecting the quantitative trait.
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Introduction
Breeders and geneticists have developed statistical 
methods to identify quantitative trait loci (QTL) by utili-
sing molecular markers. These methods have sought to
answer basic questions concerning QTL (e.g. number,
mode of action and size of action) and to map QTL on
the genome to facilitate their manipulation for breeding
purposes. In plants, populations derived from single
crosses of inbred lines have predominantly been used in
QTL mapping experiments (Jansen 2001). Major incen-
tives do exist to study more complex populations those
derived from multiple founders or collected from ongo-
ing breeding programs. These incentives are: 

1) Highly improved exploration of QTL variation since
multiple alleles are present at a high probability when
a population arises from many founders.

2) Applied context of identified QTL alleles since exper-
imental line crosses often do not represent the (com-
mercial) breeding populations (Tanksley and Nelson
1996).

3) Improved cost effectiveness of QTL mapping by us-
ing available phenotypes from selection experiments,
since the cost of obtaining marker data likely contin-
ues to decline and evaluating phenotypes becomes
relatively more expensive. Breeding programs rou-
tinely evaluate the phenotypes of many progeny with
replication at several locations.

These incentives should convince plant geneticists and
breeders that they should better exploit the data from
complex populations. However, the analysis of this type
of data has been hampered by the absence of flexible and
robust statistical tools and methods. Important criteria
for QTL mapping in complex data may be summarised
as: 

1) Robustness and flexibility to possible structures in 
the data, especially in pedigree; i.e. individuals may
cover multiple generations, the population may cover
multiple families, with large differences in size and
relationships in between.
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2) The number of QTL, across a single chromosome and
across all chromosomes, is in fact unknown and
should be treated as such in the analysis. Also, the
mode of action of QTL is unknown and/or may inter-
act with the (genetic or environmental) background in
which it is expressed.

3) Partial marker information; this holds on multiple lev-
els, i.e. DNA on an individual may be absent, markers
are partially scored on an individual, markers may be
partially informative (e.g. dominant scoring) or mark-
ers may not be informative on an individual (e.g. ho-
mozygous for parents).

4) Environmental factors may contribute to the observed
phenotypic variation in the quantitative trait. Pre-cor-
rection for these factors may eliminate uncertainty in
these factors and can introduce bias in parameter esti-
mates. Simultaneous analysis seems to be more ap-
propriate.

Here we attempt to accommodate all these criteria by the
application of a Bayesian approach. That is, a Bayesian
framework with Markov chain Monte Carlo (MCMC) al-
gorithms provides a powerful tool for estimating the
chromosomal location and contribution of genes affect-
ing complex traits and, potentially, gene-by-gene and
gene-by-environment interactions as well. The introduc-
tion of the reversible-jump MCMC algorithm by Green
(1995) solved the problem of estimating the number of
QTL in a Bayesian framework (see also Waagepetersen
and Sorensen 2001). This has successfully been applied
in simple line crosses or a single outbred family in plants
(Satagopan and Yandell 1996; Sillanpää and Arjas 1998,
1999; Stephens and Fisch 1998), humans (Heath 1997;
Thomas et al. 1997; Lee and Thomas 2000; Uimari and
Sillanpää 2001) and animals (Uimari and Hoeschele
1997; George et al. 2000). The aim of this paper is to
show plant geneticists and breeders that complex data
from plant breeding schemes can be utilised for QTL
mapping by making use of Bayesian and MCMC metho-
dology. Full utilisation of this type of data with non-
Bayesian methodology is currently not possible, and ex-
tensive comparison of our method to others was not pos-
sible. This type of comparison, frequentist versus Bayes-
ian, has been performed on previously published experi-
mental data from an outbred progeny of a single cross
between two apple cultivars (Maliepaard et al. 2001).
Next to the description of the genetic model and sam-
pling procedures, the application of the method to real
data is described to illustrate the potential of the method.
Important aspects and extensions of the Bayesian metho-
dology accommodating plant population characteristics
are discussed.

Methods and material

Terminology

Consider a diploid mapping population of N individuals contain-
ing Nf founder individuals and Nnf, non-founder individuals and

expressing some arbitrary but known pedigree structure. A non-
founder individual has both parents known and present in the ped-
igree, while a founder individual does not. The haplotype is de-
fined as the allele configuration (at different loci) received from
one parent. Under Hardy-Weinberg equilibrium, the population
frequencies of the maternal and paternal alleles at a locus are con-
sidered to be independent (unrelated). Let a phenotype be an ob-
servable or measurable trait of an individual, then the likelihood
(or “penetrance”) function, f(y|g), is the conditional probability of
observing phenotype y given QTL genotypes g, which is assumed
to be a Normal distribution. Here, we consider bi-allelic QTL and
elaborate on the multi-allelic QTL in the Discussion section.

The genotypes for QTLs are determined together by the alleles
of founder individuals (G) and by segregation indicators of non-
founder individuals (S) (Lange and Matthysse 1989; Thompson
1994; Sobel and Lange 1996). The segregation indicators uniquely
describe the flow of genes through a pedigree. An example hereof
is given in Fig. 1(a, b), were segregation indicator ‘0’ indicates the
paternally inherited allelic state and ‘1’ indicates the maternally
inherited one. For example, individual 4 with genotype Aa has
segregation indicators [0, 0] since it received the paternal allele
from its father and also the paternal allele from its mother. Note
that the paternal segregation indicator of individual 4 is not unique
in the sense that it cannot be inferred uniquely from the observed
marker data (homozygous parent). The segregation indicators are
arranged into a matrix where each non-founder individual has two
columns, i.e. the first column pertaining to the grandparental ori-
gin of the paternal allele and the second column pertaining to the
grandparental origin of the maternal allele. The rows of this matrix
correspond with all loci (markers and QTL). Observed marker da-
ta (M) may not be decisive in the segregation of alleles from par-
ents to offspring, especially the so-called grandparental origin may
be blurred. Here, we will use marker haplotypes (H) that uniquely
determine the grandparental origin or linkage phase in parents,
where the indicator P(M|H) equals one if the haplotype is consis-
tent with observed marker data and equals zero otherwise. 

Model

The model and underlying assumptions follow very closely the ge-
netic model presented by Uimari and Sillanpää (2001). Here, QTL
– QTL and QTL-environment interactions are not considered. A
quantitative trait is modeled as being genetically controlled by
NQTL different QTLs and possibly multiple environmental factors.
For QTL i, genotypes QQ, Qq and qq have effects ai, di and –ai,
respectively. The additive (ai) and dominance (di) effects for QTL
i are collected together in the vector αi≡(aidi)T. Let Qi (n×2) de-
note the (unknown) incidence matrix for the ith QTL for a pedigree
with n individuals. The elements of Qi are derived directly from
the genotypes for the ith QTL, and these genotypes are typically
unknown and are inferred from (observed) genotypes at flanking
markers. A particular row of Qi takes values of {–1,0}, {0,1} or
{1,0} in its first and second column. The model for the quantita-
tive trait values y (n×1 vector) is 

where, β is an (m×1) vector of environmental effects (including an
intercept µ) and e is an (n×1) vector of normally distributed resid-
ual effects; X (n×m), is a known incidence matrix.

In a Bayesian context, the model may best be described by a
directed acyclic graph (DAG) with the explanation of parameters
given in Fig. 2. Here, the dependencies among observed (or
known) variables (in boxes) and unobserved variables (in ovals)
become apparent. The joint posterior density of the parameters
and unobserved data, given observed phenotypic and marker data
and environmental factors is 
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where θ represent the unknown parameters of interest, that is,
. Note that if the number of founders is

small, interest may be in G rather than in allele frequency p
(which is the case in our data, see later). All other parameters were
treated as nuisance variables.

Prior assumptions

In Bayesian analysis, definition of prior knowledge on the model
variables is necessary (e.g.Fig. 2). Here, we assign uniform proper

priors to all unknowns (except for NQTL), reflecting our ignorance
of prior knowledge of these variables. The prior distribution of
NQTL is assumed to be a truncated Poisson with mean λ with a pre-
defined maximum (Sillanpää and Arjas 1998). We use two sets of
mean and maximum values (Table 2) for this prior to check inter-
ference with posterior knowledge (e.g. Satagopan and Yandell
1996; Stephens and Fisch 1998). We refer to Uimari and Sillanpää
(2001) for a full description and explanation of the priors on mark-
er and QTL haplotypes.

Map positions of markers were assumed to be known, and 
Haldane’s mapping function was used to convert genetic distances
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Fig. 1 Graphical representation
of the flow of genes (alleles A
and a) in a pedigree of ten indi-
viduals. a Pedigree and geno-
type configuration at a locus. 
b Distinction between founder
individuals (not having parents
identified in pedigree) with al-
leles representing their genotype
and non-founder individuals
with segregation indicators rep-
resenting their genotype. The
segregation indicators determine
the (grand-parental) origin of
the alleles of non-founder indi-
viduals; value 0 (1) indicates the
paternal (maternal) allele of a
parent where, within an individ-
ual, the first (second) allele
comes from the father (mother).
c Updating genotype of founder
individual 1; dashed box indi-
cating the four possible geno-
types, bold box indicating all in-
dividuals contributing to sam-
pling probabilities. d Updating
‘genotype’ of a non-founder in-
dividual 5; dashed box indicat-
ing the four possible segregation
indicator patterns, bold box con-
taining all individuals contribut-
ing to sampling probabilities

Fig. 2 Hierarchical structure
(directed acyclic graph, DAG)
of the model. Boxes refer to
known variables and ellipses to
random variables. The variables
in the top layer have been ob-
served: the variables in the bot-
tom layer are pre-defined (by
the user); the variables in the
intermediate layers are to be in-
ferred by sampling. The solid-
lined objects in the DAG are
used in the analysis of this
study, whereas the gray-lined
objects may be included in oth-
er analyses as outlined in the
Discussion. These are polygene
effects for individuals to ac-
count for background genes that
are not linked to marker loci
and the additional distributions
for environmental and allelic
effects when these distributions
are treated unknown a priori



into recombination fractions. We assume Hardy-Weinberg equilib-
rium and linkage equilibrium for all loci among the founder indi-
viduals of the pedigrees.

Data

At Plant Research International 24 crosses between cultivated and
wild genotypes were tested on resistance to late blight (Phytoph-
thora infestans) (Colon et al. 1995). Six of these crosses were sub-
sequently genotyped for molecular markers (Sandbrink et al.
2000). The genotypes mcd167 and mcd178 of the wild South
American potato species Solanum microdontum were selected as
‘resistant’ parents of a set of segregating populations on the basis
of 3-year averages of field infection by P. infestans. These two ge-
notypes were crossed with three ‘susceptible’ diploid S. tuberosum
clones, sh111, sh2988 and sh223. In the analysis, these five
founders were assumed to be unrelated (Table 1). The progeny
size per cross varied between 46 and 80 individuals (Table 1): in-
dividuals 72–117, and individuals 169–248, respectively. 

One integrated linkage map was available, comprising 12 chro-
mosomes with in total 174 markers covering 983 cM (Bink et al.
2001). The majority of the markers were dominantly-scored am-
plified fragment length polymorphism (AFLP) markers; others
were restriction fragment length polymorphisms (RFLPs) which
implied relatively low information per marker. The maximum
number of markers being informative for paternally and maternal-
ly inherited alleles was 64 and 61, respectively, while the mini-
mum number was 30 and 39, respectively (Table 1). Some chro-
mosomes were not covered with informative markers for certain
offspring. For example, chromosome 6 did not contain any infor-
mative markers for all three sh parents; similarly, chromosomes 8
and 11 did not contain any informative markers for mcd178 (see
also Fig. 1; Bink et al. 2001). The quantitative trait was field resis-
tance to Phytophthora infestans, after artificial inoculation. Each
offspring had a single observation, giving 368 phenotypes with
values ranging from 0.02 to 51.94. The phenotypic mean and vari-
ance were 23.80 and 133.16, respectively. More details on the pro-
duction of the populations and on disease testing can be found in
Colon et al. (1995).

Markov chain Monte Carlo (MCMC) simulation

In each of the MCMC analyses, a single chain was run for l06 iter-
ations. No values were deleted because of burn-in. The chain was

thinned (saving values in every 200th iteration) to reduce serial
correlation in the stored samples (and to reduce storage); the num-
ber of stored samples was 5×103 Four models were studied (P5A,
P5D, P8A and P8D), differing in mode of action of the QTL (A or
D) and in the prior for NQTL (‘‘5” or ‘‘8”). When fitting a purely
additive acting QTL, the dominance effect was kept fixed at zero,
otherwise both additive and dominance was fitted (Table 2). All
chains were initiated with NQTL = 0, the initial values for elements
in β were also zero, except for the overall mean having its initial
value computed as the average of all trait phenotypes , and the
residual variance was set equal to the variance of all trait pheno-
types. 

Identification of QTL location and effects

Following Sillanpää and Arjas (1998), we used the posterior QTL
intensity as a probabilistic measure for the localisation of QTL.
During the MCMC sampling, we did not restrict the (chromosom-
al) order of the QTL in order to label them since this way of im-
plementation was easier.

The design of our data affected the estimation of the QTL ef-
fects when allowing dominance in the model: the small number of
founders and the availability of only two generations of individu-
als sometimes resulted in the absence of a class of genotypes in
the second generation (for which phenotypes are available): e.g.
absence of qq, hence prohibiting the estimation of some contrasts.
For example, when parent MCD167 was heterozygous for a QTL
and all other four founders were homozygous for the same allele,
then it was not possible to distinguish additive effect and domi-
nance effect of this QTL. Therefore, the MCMC output was scru-
tinised on the presence of all three genotypes in the offspring
when estimating additive and dominance effects of a QTL. If Q
and q denoted the two possible alleles at a QTL (where Qq repre-
sents also qQ) and mcd, sh refer to parents, then the following
cases were useful: (1) mcdQq × shQq; (2) mcdQq × (shQQ + shqq); (3)
shQq × (mcdQQ + mcdqq). At a given MCMC-iteration, zero, one or
two of these cases may occur, of which the zero-cases were ex-
cluded when estimating additive and dominance effects.

Results

Genome-wide NQTL

Fitting the additive models P5A and P8A (Table 2) re-
sulted in a posterior estimate of NQTL 3.56 and 3.64, re-
spectively. For the dominance models P5D and P8D,
these numbers were 4.59 and 4.45, respectively. Obvi-
ously, differences in these estimates were larger due to
the type of actions fitted for the QTL than due to the pri-
or assumptions. Also, the shapes of the posterior distri-
butions of NQTL were very similar within the ‘type-of-
action’ models, where as a clear shift was observed be-
tween the ‘type-of-action’ models (additive versus domi-
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Table 1 Pedigree and number of informative markers (paternal
and maternal) of experiment

Individual Name Pedigree Markers

Father Mother Paternal Maternal

1 mcd167 – –
2 mcd178 – –
3 sh111 – –
4 sh2988 – –
5 sh223 – –
6–71a mcd167×sh111 1 3 62b 61b

72–117 mcd167×sh2988 1 4 64 60
118–168 mcd167×sh223 1 5 64 60
169–248 mcd178×sh111 2 3 51 58
249–315 mcd178×sh2988 2 4 41 51
316–373 mcd178×sh223 2 5 30 39

a Individuals 6 through 71 shared the same parents; i.e., father
mcd167 and mother sh111
b In this set of individuals, 62 (61) markers were informative for
paternally (maternally) inherited alleles; i.e. the father (mother)
was heterozygous for these markers

Table 2 Specification of four MCMC chains

λ max(NQTL) QTL effects

Additive Dominance

P5A 5 10 Fitted Fixed at zero
P8A 8 12 Fitted Fixed at zero
P5D 5 10 Fitted Fitted
P8D 8 12 Fitted Fitted



nance) (Fig. 3). In all models, the posterior distribution
was clearly more peaked than the prior distribution with
three or four values for NQTL covering more than a 0.98
probability in the additive and dominance models, re-
spectively (Fig. 3). 

Chromosome-wise NQTL

The estimated posterior distributions of NQTL for all 12
chromosomes are given in Table 3 and these clearly indi-
cate that chromosomes 1, 2, 7, 8, 9, 11 and 12 did not
contain QTL that were segregating in the five parents.

The presence of at least one QTL on chromosomes 4, 5
and 10 was approved, irrespective of which model was
fitted, where the probability of two QTL on the same
chromosome was relatively small; this occured only in
the dominance models. The probability of a segregating
QTL on chromosomes 3 and 6 was clearly higher for 
the dominance models than for the additive models 
(Table 3). For chromosome 6, QTL were only approved
if segregation occurred in the mcd parents, since the sh
parents did not have informative markers on this chro-
mosome. 

QTL locations

The posterior distributions (QTL intensity according to
Sillanpää and Arjas 1998) of map locations of QTL are
given in Fig. 4 for models P5A (left panel) and P8D
(right panel). The posterior distributions of P8A were
very similar to those of P5A, and those of P5D were very
similar to those of P8D (results not shown). Posterior
knowledge of the map location of QTL varied from
dense to vague for the QTL on chromosomes 4 and 3, re-
spectively (Fig. 4). When evidence for presence of a
QTL was strong, the posterior distributions of QTL loca-
tions were very similar for the additive and dominance
models. For the P8D model, the posterior modes were
13, 39, 47, 9 and 14 cM for QTL at chromosomes 3, 4, 5,
6 and 10, respectively. Again, these modes were very
similar for all models, although the magnitude of 
the peaks varied between the additive and dominance
models (Fig. 4). 
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Fig. 3 Prior and posterior probability density on NQTL across the
genome (12 chromosomes) with respect to the four different 
models (Posterior_A = additive QTL, Posterior_D = additive and
dominance QTL, as defined in Table 2)

Table 3 Posterior probability estimates for the number of QTL per
chromosome, P(NQTL |y,M). Four models were applied, varying in
a priori expected number of QTL (P5A+P5D or P8A+P8D) and

varying in exclusion (P5A+P8A) or inclusion (P5D+P8D) of dom-
inance as mode of action for the QTL

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12

P(NQTL |y,M)
P5A

0 0.99 1.00 0.93 0.00 0.00 0.62 0.98 1.00 0.98 0.00 1.00 0.96
1 0.01 0.00 0.07 0.99 0.99 0.36 0.02 0.00 0.02 0.99 0.00 0.04
2 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

P5D
0 0.99 0.98 0.53 0.00 0.00 0.32 0.98 0.99 0.99 0.00 0.97 0.96
1 0.01 0.02 0.46 0.97 0.91 0.67 0.02 0.01 0.01 0.91 0.03 0.04
2 0.00 0.00 0.01 0.03 0.09 0.01 0.00 0.00 0.00 0.07 0.00 0.00

P8A
0 0.98 0.99 0.93 0.00 0.00 0.60 0.99 0.97 0.99 0.00 0.98 0.98
1 0.02 0.01 0.07 0.99 0.97 0.39 0.01 0.03 0.01 0.98 0.02 0.02
2 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.00 0.02 0.00 0.00

P8D
0 0.99 1.00 0.55 0.00 0.00 0.23 0.98 1.00 0.99 0.00 0.94 0.97
1 0.01 0.00 0.44 1.00 0.95 0.76 0.02 0.00 0.01 0.99 0.06 0.03
2 0.00 0.00 0.01 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00



QTL heterozygosity of founders

For the QTL on chromosome 4, only one of the founders
(mcd167) was segregating; all others were homozygous
for the same allele (Table 4). Apparently, individual
mcd167 was segregating for a very large QTL that did
not or could not be segregating in other parents. Infer-
ence on heterozygosity for the QTL on chromosome 10

was also clear; i.e. both mcd167 and mcd178 segregated
for this QTL while the other founders did not, although
the posterior probability of sh223 was relatively high for
the P8D model. The inferences on segregation of the
QTL on chromosome 5 were consistent within the mod-
els fitted, but differences between the additive and domi-
nance models were clearly present. The mcd parents
were very likely segregating for the QTL, although the

756

Fig. 4 Posterior QTL intensity
(scale equal but not shown) 
for those chromosomes with
P(NQTL≥1|y, M) > 0.10 for
model P5A (left panel) and
P8D (right panel)



probability tended to decrease when dominance was al-
lowed in the model. In the dominance model, the proba-
bility of segregation of QTL in the sh parents was con-
siderably lower, especially for parent sh111 (0.2 instead
of 0.9 in the additive model). The QTL on chromosome
was mostly likely segregating in parent sh2988, irrespec-
tive of the model, while all other parents most likely did
not segregate for this QTL. Parent mcd167 was most
probably segregating for the QTL on chromosome 6,
while parents mcd178, sh111 and sh2988 had a moderate
probability of segregation. For these latter three parents,
the probabilities were different for the additive and dom-
inance models. Here it should be noted (again) that par-
ents sh111 and sh2988 did not have informative markers
on chromosome 6 and, consequently, instead of multi-
point QTL mapping a (major gene) segregation analysis
was actually performed for these individuals. 

QTL effects

Additive models

The largest substitution effect was found for the QTL on
chromosome 4, which was approximately three times as
large as the effects estimated for on chromosome 5 and
10 (not shown). These latter substitution effects were
also estimated accurately, while posterior distributions of
the substitution effects of QTL on chromosomes 6 and 3
were less accurate (results not shown).

Dominance models

As explained previously, it was not possible to estimate
dominance and additive effects for all QTL. For the QTL

found on chromosomes 3, 5 and 10, we computed the
highest posterior density (HPD) regions along the chro-
mosome using 1 cM – bins (Fig. 5). Note that we did not
account for the probability of occurrence of the QTL in a
particular bins: to do this one can weight the estimates
with the estimated QTL intensity from Fig. 4 (or one
could impose a threshold on QTL intensity). The esti-
mated HPD regions for substitution effects were very
similar to those in the additive model (latter results not
shown). Dominance was substantial for the QTL on
chromosomes 3 and, in particular 5, whereas the QTL on
chromosome 10 acted predominantly in an additive
mode. The HPD region results for the P5D and P8D
models were highly similar (Fig. 5), although the range
along chromosomes 3 and 5 was somewhat extended in
the P5D model (but the QTL intensity in these additional
ranges was very low). 

Interpretation of Bayesian results

Our marker data comprised a linkage map of 12 chromo-
somes with 174 markers. While these figures suggest
that a rather dense marker map was available, the infor-
mation content of the markers was highly variable. For
example, we had a few RFLP markers that were infor-
mative on all five founder parents and that were scored
for all offspring. However, we also had many AFLP
markers that were only informative for one out of five
parents and perhaps only for offspring resulting from the
mating of this parent with only one of the other parents.
Furthermore, a large number of (AFLP) marker scores
were missing on offspring (for details, Bink et al. 2001).
An important observation in our analysis was that for
chromosomes with a low marker information content
(e.g. chromosomes 2, 8 and 11). QTL probabilities were
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Table 4 Posterior probability
estimates for parents being 
heterozygous for a QTL

Chromosome Modela P(QTL|y, M)b P(heterozygous parent | QTL, y, M)c

mcd167 mcd178 sh111 sh2988 sh223

3 P5A 0.07 0.06 0.09 0.05 0.97 0.13
3 P8A 0.07 0.15 0.07 0.07 0.95 0.15
3 P5D 0.58 0.10 0.01 0.02 0.97 0.03
3 P8D 0.46 0.10 0.02 0.03 0.98 0.02
4 P5A 1.00 1.00 0.00 0.00 0.00 0.00
4 P8A 1.00 1.00 0.00 0.00 0.00 0.00
4 P5D 1.00 0.98 0.00 0.00 0.01 0.01
4 P8D 1.00 1.00 0.00 0.00 0.00 0.00
5 P5A 1.00 0.92 0.99 0.92 0.94 0.71
5 P8A 1.00 0.89 0.98 0.89 0.90 0.68
5 P5D 1.00 0.84 0.92 0.21 0.59 0.65
5 P8D 1.00 0.90 0.97 0.20 0.62 0.58
6 P5A 0.39 0.93 0.27 0.42 0.63 0.17
6 P8A 0.41 0.90 0.18 0.41 0.67 0.14
6 P5D 0.67 0.97 0.76 0.25 0.33 0.11
6 P8D 0.78 0.97 0.58 0.30 0.29 0.17

10 P5A 1.00 0.96 1.00 0.00 0.01 0.16
10 P8A 1.00 0.95 0.98 0.00 0.01 0.15
10 P5D 1.00 0.89 0.93 0.01 0.06 0.12
10 P8D 1.00 0.99 1.00 0.00 0.01 0.22

a Models: see Table 2
b P(QTL|y, M) is the posterior
probability of at least one QTL
being present on a chromosome
c P(heterozygous parent | QTL,
y, M) is the posterior probabili-
ty of parent being heterozygous
for a QTL, conditional on the
presence of that QTL



low. The Bayesian multiple-QTL methods apparently
avoid false-positive (or ghost) QTL (e.g. Wright and
Kong 1997). Also, in general, Bayesian methods seem to
be well suited to detect multiple QTLs on a linkage
group since these are modelled explicitly. This is sup-
ported by simulation studies (Sillanpää and Arjas 1998,
1999).

The simultaneous screening of all chromosomes and
the recognition of parental relationships in the Bayesian
analysis resulted in somewhat different results than those
previously obtained from analyses of the same data (Sand-
brink et al. 1999; Bink et al. 2001). In these previous ana-
lyses, data on a single group of offspring of two parents
(Sandbrink et al. 1999) or on a single chromosome (Bink
et al. 2001) were analysed with single-QTL models. Bink
et al. (2001) in particular reported many QTL that were
not consistent across different groups of offspring from
the same parent. Fitting the same parental alleles for these
groups of offspring automatically eliminated these incon-
sistencies. One may argue that a QTL may interact with
either background genes (epistasis) or with environmental
factors (G×E interaction), a factor that we currently ignore
in our model. These types of interactions may be incorpo-
rated in the Bayesian model (see later); however, we think
that the potato marker data was insufficient to estimate pa-
rameters of these extended models accurately.

Accurate estimation of dominance and additive ef-
fects for some QTL was already hampered in the current

analysis because of the small number of founders (and
small number of generations). For the QTL on chromo-
somes 3, 5 and 10 we plotted HPD regions for the size of
the allelic effects across the chromosome (Fig. 5). These
HPD regions can be very useful to plant breeders: they
do not only provide an point estimate but also clearly ex-
press the remaining uncertainty in parameter estimates.
For example, in the case of risk avoidance, the choice for
a QTL for implementation in a breeding scheme may be
based on its relatively high HPD lower bound rather than
on its relatively lower posterior mean estimate. The HPD
regions were rather constant over a substantial length of
the chromosomes, suggesting a low discrimination pow-
er in the location of the QTL. However, the QTL intensi-
ty plots (Fig. 4) should be the most determining factor 
in assigning the most likely map location of the QTL
(Sillanpää and Arjas 1998; Xu and Yi 2000). One could
impose a minimum threshold of QTL intensity for plot-
ting the HPD regions for allelic effects of the QTL.

The high similarity of results indicated that posterior
inferences were not sensitive to prior assumptions on
NQTL i.e. the a priori expected number of QTL. In other
words, the data contained sufficient information to over-
whelm the prior expectations. Note that inconsistency in
posterior estimates P5A versus P8A, and P5D versus
P8D) could have been caused by both convergence fail-
ure or by sensitivity to prior assumptions. In addition, we
ran additional MCMC simulations with an extreme value
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Fig. 5 Highest Posterior Den-
sity regions for dominance
(dashed lines) and additive
(solid lines) effects for QTL on
chromosomes 3, 5, and 10 for
the models P5D (left panel) and
P8D (right panel). The bold
line represent the posterior me-
dian (50% quantile) the thinner
lines represent the lower bound
(5% quantile) and upper bound
(95% quantile) of the 90%
HPD region



for λ– 25 – and the posterior mean estimates for the
number of QTL were 3.91 and 4.61 for P25A and P25D,
respectively. The posterior distributions for NQTL in these
models were very similar to those presented in Fig. 3.

Discussion

We describe a Bayesian method for QTL mapping in
complex plant populations and report results from its ap-
plication to a potato data set. This Bayesian method was
originally developed for the analysis of data in human
genetics (Uimari and Sillanpää 2001). Uimari and 
Sillanpää (2001) evaluated their method on simulated
(and real) data in human genetics, and their results on ef-
fects and locations of QTLs were consistent with the val-
ues used in simulation. Here, the same method proved to
be adequate for complex plant populations as well. In the
following we will discuss issues on: (1) Bayesian hierar-
chical modeling; (2) extension to typical plant popula-
tions and (3) revenues from a Bayesian QTL analysis.

Bayesian hierarchical modeling

The directed acyclic graph that was presented in Fig. 2
presents all dependencies among known quantities (data
or prior assumption) and unknown quantities (model pa-
rameters). This graph directly shows how the modal can
be extended or modified to allow additional variables in
the model; e.g. a polygenic component for all individuals
accounting for the joint additive effect (u) of genes un-
linked to any of the markers (background genes). These
additive effects, one for each individual, follow a Nor-
mal prior, i.e., , where A is the numerator rela-
tionship matrix (Henderson 1976) derived from the
known pedigree, and is the variance due to these un-
linked genes (also treated as an unknown). One may as
well introduce an extra layer in the model; for example,
the allelic effects of the QTL are no longer distributed
following a pre-specified prior distribution (bounded
Uniform) but following a Normal prior, , A
similar extension can be made for environmental factors
(see Fig. 2).

In this study, we introduced QTL with two alleles,
which has been commonly used in previously presented
Bayesian analyses as well (Uimari and Hoeschele 1997,
Heath 1997). When the true number of alleles at a QTL
is larger than two, this may be accommodated in the bi-
allelic QTL model by allowing multiple QTL at the same
chromosomal segment. In our study, we did not prohibit
QTL to be very close to each other; however, we did not
observe this phenomenon in our analysis, suggesting that
the biallelic QTL model seemed sufficient for these data.
The extension from biallelic to a multi-allelic QTL mod-
el in the Bayesian analysis is also straightforward since
this only affects the allele frequency (p) and the founder
genotypes (G). Instead of a scalar p representing the al-
lele frequency of one of the two QTL alleles, we now

have a vector p representing the frequencies of all possi-
ble QTL alleles. There is, however, a potential danger
when using highly multi-allelic QTL modelsnot all QTL
genotypes may be represented among individuals with
phenotypes. Then, the posterior estimates for allelic ef-
fects that are related to these ‘phenotype-empty’ geno-
types are simply a representation of the prior knowledge,
which may be very vague. An appealing alternative
seems to be the treatment of the number of alleles per
QTL as being similar to the number of QTL – as un-
known and to be sampled by using a reversible jump
mechanism. Another alternative model for the QTL (not
shown in Fig. 2) is the QTL variance component analysis
(Fernando and Grossman 1989). In this approach each
individual has two unique allelic effects for a QTL,
where allelic effects of relatives exhibit a covariance
structure that is based on marker haplotypes and the map
location of the QTL relative to the known marker posi-
tions. This latter Bayesian approach has been implement-
ed for livestock populations (Bink and VanArendonk
1999; Yi and Xu 2000).

Extension to typical plant populations

While we concentrated on outbred plant species in this
study, the Bayesian approach can be easily extended to
handle fully inbred individuals. Suppose one or more
founders are an inbred line of individuals, then the allele
frequency for QTL is discrete; i.e. 1 for the allele that is
present and 0 for (all) other allele(s). In that case, multi-
ple “families” of founder individuals may be assigned,
with unique allele frequencies for each family.

Care must be taken when including an additional
polygenic component in the model when inbred founders
are present. This may be solved by fitting a finite poly-
genic model (Thompson and Skolnick 1977), instead of
an infinitesimal polygenic model (Fisher 1918). The oc-
currence of selfing and individuals being the mother of
one progeny and being the father of another progeny (di-
allel designs; Reba and Goffinet 2000) is typical for
plant populations and requires some modification of the
pedigree approach.

Revenues from a Bayesian QTL analysis

Genome-wide multiple QTL mapping

Simultaneously screening of all chromosomes avoids the
use of cofactors. The use of cofactors is not truly Bayes-
ian if cofactor selection is based on the same data; the
use of cofactors or unlinked QTLs may also be problem-
atic if markers are not informative in all parents. Cofac-
tors cannot easily be used in multiple family situation
because linked alleles (in linkage disequilibrium with the
QTL) can be different in different families. The effects
of cofactors may be nested within families, which sub-
stantially increases the number of parameters. However,
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unlinked QTLs or polygenic components may be used
instead.

Multiple generations of individuals

Bayesian QTL analysis has the ability to analyse data on
multiple generations of genotyped individuals and unbal-
anced family sizes and mating designs. For example, our
Bayesian method was used to analyze data on pig selec-
tion lines with almost 4,500 individuals whose pedigree
covered more than seven generations (Bink et al. 2000).

Uncertainty in linkage phase of parents

Our sampling of the grand-parental origin of alleles in all
individuals naturally reflected the uncertainty in linkage
phase of parents. This approves its application to pedi-
grees with small numbers of offspring per parent as well
as for cases with (very) incomplete marker data, which
was the case in our potato data.

Missing marker genotypes

Our multi-point QTL mapping procedure utilises all
markers neighboring a putative QTL. The informative
markers closest to the QTL are used when calculating
the segregation probabilities of QTL alleles (avoiding
data augmentation).

Non-QTL influences

Any environmental factors or residual polygenes can be
included directly into the QTL mapping model, such that
phenotypic pre-adjustments are not needed and, moreover,
uncertainties in their estimation can be fully accounted.
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Appendix

Markov chain Monte Carlo simulation

Inferences about estimated parameters were based on
marginal posterior distributions that were achieved (ap-
proximated) through MCMC simulations. One iteration
of the simulation scheme was 

A) Marker variables
1) Update blocks of ordered marker loci haplotypes H

individual by individual. Size of a block was four and
the initial block started randomly across all loci;

2) Update marker allele frequencies q.

B) Genetic variables
1) Update number of QTLs NQTL, i.e., propose deletion

or addition of a QTL with equal probability;
2) Update gene effects αi for each QTL i;
3) Update map position li for each QTL i;
4) Update ordered founder genotypes G for each QTL i;
5) Update segregation indicators S for each QTL i,
6) Joint update S with marker haplotypes H (at every

10th iteration, see also Figure 2).
7) Update QTL allele frequency p for each QTL i.

C) Non-genetic variables
1) Update covariate effects β;
2) Update variances and .

The parameters (H, G, S, p, q, β, , ) were updated
by use of Gibbs steps since sampling from their full con-
ditional densities proved to be simple and efficient.
Founder genotypes and segregation indicators were up-
dated a single individual at a time using a Gibbs step, as
illustrated in Fig. 3(C and D). The full posterior distribu-
tion of genotype of individual 1 (Fig. 3C) is determined
by the allele frequency (p) and possible phenotypes of
individuals 1, 4, 5 and 7, since the latter three individuals
inherited the first (paternal) allele of individual 1. Note
that by use of segregation indicators, the maternal allele
of individual 2 being A or a is entirely determined by the
allele frequency. Sampling the segregation indicators for
individual 5 (Fig. 3D), four possible combinations, in-
volves contributions from markers flanking the trait lo-
cus of individuals 1, 2 and 5, and possible phenotypes of
individuals 5, 9 and 10. Note that the segregation indica-
tors of these latter individuals do not change when 
updating individual 5, however, their genotypes may
change. The parameters (αi, li) were updated by use of
Metropolis-Hastings steps. The number of affecting loci
(NQTL) was updated through reversible jump sampling
(Green 1995). Here, we adopted the implementation pro-
posed by Sillanpää and Arjas (1998). As a basic strategy
only single-step moves were allowed, i.e., only one locus
may be added or deleted during an updating cycle. In the
locus addition proposal (=birth step), new values for I, p
and α were generated from their priors, allowing multi-
ple QTLs within the same marker interval. To increase
the probability of acceptance for the addition step, we
used a scaling factor w on the prior distribution of α.
New founder genotypes were proposed from the prior
conditional on the new allelic frequencies (p). Similarly,
new segregation indicators for non-founder individuals
were created conditional on the new location of the
QTL; that is, incorporating information from its flanking
markers (or neighboring QTL if these were closer to the
new location). Given a truncated Poisson prior distribu-
tion on the number of QTL with parameter λ, the accep-
tance ratio of the birth step reduces to (see also Sillanpää
and Arjas 1998) 
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where ‘indicates the old values plus proposed values for
the new locus (and “others” refer to all other random
variables, which are constants in the numerator and de-
nominator). If a deletion (death step) was proposed the
locus to be deleted was chosen randomly. The accep-
tance ratio for a deletion step is 1/A.

MCMC simulation: convergence and mixing

The order of MCMC updating may be crucial in obtain-
ing proper and efficient mixing. There are two strong de-
pendency relations in the offspring data: the vertical de-
pendency between parents and their offspring, and the
horizontal dependency between adjacent loci in each in-
dividual. Single-site-updating, i.e. individual by individ-
ual and locus by locus, may cause the sampler to explore
only a fraction of the sample space because of these de-
pendencies (Sheehan and Thomas 1993; Janss et al.
1995; Jensen and Sheehan 1998). To improve its mixing
behavior the proposed Bayesian method was implement-
ed by: (1) replacing QTL genotypes for all individuals
by genotypes for founders and segregation indicators for
non-founders; (2) joint sampling of map position and
segregation indicators of the QTL (3) Omitting data aug-
mentation for untyped or uninformative markers; (4) up-
dating several markers jointly within a single block,
where the block was randomly chosen along a chromo-
some (Uimari and Sillanpää 2001). The contribution of
each of these steps or their overall contribution to proper
mixing compared to single-site updating schemes, was
not evaluated in this study and remains an interesting 
area of research.

In this study we performed MCMC simulations of 106

iterations per analysis to obtain reliable posterior infer-
ences; i.e., to explore to entire parameter space adequate-
ly. Whether this number of iterations was really suffi-
cient is hard to say since assessment of convergence of a
MCMC chain is a rather difficult task. This holds espe-
cially here because the dimension of the model changed
with high frequency and consequently the identity of the
QTL also changed. We calculated the effective number
of samples (Geyer 1992; Sorensen et al. 1995; Lee and
Thomas 2000) for those parameters that were always in
the model (e.g. β, NQTL, and ); however, their validity
may not hold in a variable dimension problem. The mini-
mum of these calculated effective numbers among the
four MCMC simulations was always for NQTL, with val-
ues of 94 and higher. Another possibility would have
been to apply some diagnostic tools, such as CODA
(Best et al. 1995). but here also problems due to the vari-
able dimension are severe. An ensuring measure that
convergence was likely reached in our simulations were
the very similar results obtained for the two additive
models (P5A and P8A) and those for the dominance
models (P5D and P8D).
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